• 本月热门标签:
  • 情感

当前位置: 情感语录 > 情感 >

文本挖掘避孕药主题情感分析

2019-06-09 19:42
恋爱 距离上次文本挖掘小文章时间已经过了3个月了,北京已经入冬,有人说北京的冬天很冷,但是吃上火锅很暖;也有人说北京的冬天雾霾严重,太干。这两句表达的是对北京冬天的

文本挖掘避孕药主题情感分析恋爱距离上次文本挖掘小文章时间已经过了3个月了,北京已经入冬,有人说北京的冬天很冷,但是吃上火锅很暖;也有人说北京的冬天雾霾严重,太干。这两句表达的是对北京冬天的情感,即有正面也有负面。

  如果在舆情分析而言,我们在做营销分析,分析产品、活动优劣,或者希望维护品牌PR,我们就需要针对消费者网络发声去分析情感,来帮助我们维护品牌,改善活动产品,来达到监测舆情分析效果。失恋挽回!换句话说也就是我们今天分享的主题sentiment

  笔者5年前做舆情分析时候一般来说就是人工舆情,并没有加入高级点的分析工具减少人工投入。随着R,python等的流行,同时,随着各种开源包tm,LDA,Rwordseg开发,以及高等概率数学的应用,例如分词算法根据隐性马尔科夫链算法编写而成(有兴趣的同学自己研究),让我们之前的工作量大大减少。因此人工舆情转换成人工纠正舆情大势所趋,即我们使用工具减少读帖子的时间,并且让机器学习,人工后期纠错。

  前两个可以作为统计分析-统计时间趋势音量,音量份额,后两个可以作为建模分析-主题分析,情感判别。

  这里有个小插曲:上次分享的是主题分析,笔者最近又重新梳理了下LDA,发现tm包中文分词形成词频矩阵很不理想,这会导致LDA无法应用,因此,后续笔者会自己写个脚本将词频矩阵实现,这样会方便LDA,会方便聚类分析,以及预测分析。

  言回正传,情感相亲,情感分析就是表达发言人对一个主题的看法,有好有坏,或者中立。情感分析应用分类两类,第一是给定正负面词,算分值,高于或者低于baseline则表示正面、负面情绪。第二,根据深度学习,利用神经网络来区分正负情感。本文先实现第一类情感分析。

  由于本文是医用词汇,需要添加的词汇偏重医用或者品牌,不让分词拆成单个字符

  文本处理后,根据词频出现频次,且过滤掉分词为单个词的中文,绘制词云图,鼠标所过的词可以显示文本出现次数,例如避孕药:767次

  将文本中的分词按照中英文词典的正负面词打分,计算分值,若中性词(不出现字典)则记为0。

  本文由 @shangyuan 原创发布于人人都是产品经理。未经许可,禁止转载。

  人人都是产品经理(是以产品经理、运营为核心的学习、交流、分享平台,集媒体、培训、社群为一体,全方位服务产品人和运营人,成立8年举办在线+期,线+场,产品经理大会、运营大会20+场,覆盖北上广深杭成都等15个城市,在行业有较高的影响力和知名度。平台聚集了众多BAT美团京东滴滴360小米网易等知名互联网公司产品总监和运营总监,他们在这里与你一起成长。